173 research outputs found

    Relationship between blood pressure repeatedly measured by a wrist-cuff oscillometric wearable blood pressure monitoring device and left ventricular mass index in working hypertensive patients

    Get PDF
    This study sought to evaluate the relationship between blood pressure (BP) taken by a new wrist-cuff oscillometric wearable BP monitoring device and left ventricular mass index measured by cardiac magnetic resonance imaging (cMRI-LVMI) in 50 hypertensive patients (mean age 60.5 ± 8.9 years, 92.0% men, 96% treated for hypertension) with regular employment. Participants were asked to self-measure their wearable BPs twice in the morning and evening under a guideline-recommended standardized home BP measurement, and once each at five predetermined times and any additional time points under an ambulatory condition for a maximum of 7 days. In total, 2105 wearable BP measurements (home BP: 747 [morning: 409, evening: 338], ambulatory condition: 1358 [worksite: 942]) were collected over 5.5 ± 1.2 days. The average of all wearable systolic BP (SBP) readings (129.8 ± 11.0 mmHg) was weakly correlated with cMRI-LVMI (r = 0.265, p = 0.063). Morning home wearable SBP average (128.5 ± 13.8 mmHg) was significantly correlated with cMRI-LVMI (r = 0.378, p = 0.013), but ambulatory wearable SBP average (132.5 ± 12.7 mmHg) was not (r = 0.215, p = 0.135). The averages of the highest three values of all wearable SBPs (153.3 ± 13.9 mmHg) and ambulatory wearable SBPs (152.9 ± 13.9 mmHg) were 16 mmHg higher than that of the morning home wearable SBPs (137.0 ± 15.9 mmHg). Those peak values were significantly correlated with cMRI-LVMI (r = 0.320, p = 0.023; r = 0.310, p = 0.029; r = 0.451, p = 0.002, respectively). In conclusion, an increased number of wearable BP measurements, which could detect individual peak BP, might add to the clinical value of these measurements as a complement to the guideline-recommended home BP measurements, but further studies are needed to confirm these findings

    Species-Dependent Expression of the Hyoscyamine 6[beta]-Hydroxylase Gene in the Pericycle

    Full text link

    Josephson Plasma in RuSr2GdCu2O8

    Full text link
    Josephson plasma in RuSr2_{2}GdCu2_{2}O8_{8}, Ru1x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), and RuSr2_{2}Eu2x_{2-x}Cex_{x}Cu2_{2}O10_{10} (x = 0.5) compounds is investigated by the sphere resonance method. The Josephson plasma is observed in a low-frequency region (around 8.5 cm1^{-1} at T \ll TcT_{c}) for ferromagnetic RuSr2_{2}GdCu2_{2}O8_{8}, while it increases to 35 cm1^{-1} for non-ferromagnetic Ru1x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), which represents a large reduction in the Josephson coupling at ferromagnetic RuO2_{2} block layers. The temperature dependence of the plasma does not shift to zero frequency ({\it i.e.} jcj_{c} = 0) at low temperatures, indicating that there is no transition from the 0-phase to the π\pi-phase in these compounds. The temperature dependence and the oscillator strength of the peak are different from those of other non-magnetic cuprates, and the origins of these anomalies are discussed.Comment: to appear in Phys. Rev.B Rapid Com

    Overexpression of IL-1ra gene up-regulates interleukin-1β converting enzyme (ICE) gene expression: possible mechanism underlying IL-1β-resistance of cancer cells

    Get PDF
    We investigated the interaction of endogenous interleukin (IL)-1β, IL-1ra, and interleukin-1β converting enzyme (ICE) in four human urological cancer cell lines, KU-19-19, KU-1, KU-2 and KU-19-20. Northern blot analysis showed that IL-1β gene was expressed in all cell lines. On the other hand, in KU-19-19 and KU-19-20, the gene expressions of both IL-1ra and ICE were suppressed. MTT assay revealed that IL-1β (10 ng ml−1) promoted cell growth in KU-19-19 and KU-19-20, while it inhibited in KU-1 and KU-2. An ICE inhibitor, Acetyl-Tyr-Val-Ala-Asp-CHO (YVAD-CHO) blocked IL-1β-induced growth inhibition in KU-1 and KU-2. Overexpression of the secretory type IL-1ra with adenovirus vector (AxIL-1ra) enhanced ICE gene expression, while exogenous IL-1ra (100 ng ml–1) did not enhance it. Furthermore, AxIL-1ra treatment promoted endogenous IL-1β secretion and induced significant growth inhibition and apoptotic cell death on KU-19-19 and KU-19-20. Treatment with either IL-1ra (100 ng ml−1), IL-1β antibody (100 μg ml−1), or YVAD-CHO blocked AxIL-1ra-induced cell death in KU-19-19 and KU-19-20. These results suggest that IL-1β-sensitivity depends on the level of ICE gene expression, which is regulated by the level of endogenous sIL-1ra expression. This is a first report on the intracellular function of sIL-1ra and these findings may provide key insights into the mechanism underlying the viability of cancer cells. © 1999 Cancer Research Campaig

    Glycoprotein Hyposialylation Gives Rise to a Nephrotic-Like Syndrome That Is Prevented by Sialic Acid Administration in GNE V572L Point-Mutant Mice

    Get PDF
    Mutations in the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosamine kinase, result in distal myopathy with rimmed vacuoles (DMRV)/hereditary inclusion body myopathy (HIBM) in humans. Sialic acid is an acidic monosaccharide that modifies non-reducing terminal carbohydrate chains on glycoproteins and glycolipids, and it plays an important role in cellular adhesions and interactions. In this study, we generated mice with a V572L point mutation in the GNE kinase domain. Unexpectedly, these mutant mice had no apparent myopathies or motor dysfunctions. However, they had a short lifespan and exhibited renal impairment with massive albuminuria. Histological analysis showed enlarged glomeruli with mesangial matrix deposition, leading to glomerulosclerosis and abnormal podocyte foot process morphologies in the kidneys. Glycan analysis using several lectins revealed glomerular epithelial cell hyposialylation, particularly the hyposialylation of podocalyxin, which is one of important molecules for the glomerular filtration barrier. Administering Neu5Ac to the mutant mice from embryonic stages significantly suppressed the albuminuria and renal pathology, and partially recovered the glomerular glycoprotein sialylation. These findings suggest that the nephrotic-like syndrome observed in these mutant mice resulted from impaired glomerular filtration due to the hyposialylation of podocyte glycoproteins, including podocalyxin. Furthermore, it was possible to prevent the nephrotic-like disease in these mice by beginning Neu5Ac treatment during gestation

    Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Get PDF
    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally

    Identification and Visualization of CD8+ T Cell Mediated IFN-γ Signaling in Target Cells during an Antiviral Immune Response in the Brain

    Get PDF
    CD8+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8+ T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses

    Immunogenic Comparison of Chimeric Adenovirus 5/35 Vector Carrying Optimized Human Immunodeficiency Virus Clade C Genes and Various Promoters

    Get PDF
    Adenovirus vector-based vaccine is a promising approach to protect HIV infection. However, a recent phase IIb clinical trial using the vector did not show its protective efficacy against HIV infection. To improve the vaccine, we explored the transgene protein expression and its immunogenicity using optimized codon usage, promoters and adaptors. We compared protein expression and immunogenicity of adenovirus vector vaccines carrying native or codon usage-optimized HIV-1 clade C gag and env genes expression cassettes driven by different promoters (CMV, CMVi, and CA promoters) and adapters (IRES and F2A). The adenovirus vector vaccine containing optimized gag gene produced higher Gag protein expression and induced higher immune responses than the vector containing native gag gene in mice. Furthermore, CA promoter generated higher transgene expression and elicited higher immune responses than other two popularly used promoters (CMV and CMVi). The second gene expression using F2A adaptor resulted in higher protein expression and immunity than that of using IRES and direct fusion protein. Taken together, the adenovirus vector containing the expression cassette with CA promoter, optimized HIV-1 clade C gene and an F2A adaptor produced the best protein expression and elicited the highest transgene-specific immune responses. This finding would be promising for vaccine design and gene therapy
    corecore